Žiupsnelis mokslo

https://pubmed.ncbi.nlm.nih.gov/31254243/

https://www.mdpi.com/1420-3049/22/9/1409/htm

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019938/ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834197/

 

Hajimehdipoor H, et al. In vitro antibacterial activity of ginger extracts obtained from Iranian market. J Ethnopharmacol. 2013;145(3): 769-773. doi: 10.1016/j.jep.2012.12.013

 

Mishra BB, et al. Antileishmanial activities of Artemisia annua and Artemisia afra are due to inhibition of glutathione biosynthesis. Antimicrob Agents Chemother. 2012;56(1): 480-487. doi: 10.1128/AAC.05239-11

 

Iqbal H, et al. In vitro anti-plasmodial activity of ginger (Zingiber officinale) extracts on Plasmodium falciparum. Pak J Pharm Sci. 2016;29(4 Suppl): 1285-1289.

 

Grzanna R, et al. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2): 125-132. doi: 10.1089/jmf.2005.8.125

https://www.scielo.br/j/mioc/a/w5RscYLJtTTFsCT8XYMCm9P/?format=pdf&lang=en

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664031/#B14-foods-06-00092

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706.


  1. Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., & Osada, T. (2005). Anti-inflammatory and antioxidant activities of blackcurrant anthocyanins compared to bilberry anthocyanins. Food science and technology research, 11(2), 209-213.


  2. Hurst, R. D., Wells, R. W., Hurst, S. M., McGhie, T. K., & Cooney, J. M. (2010). Blackcurrant proanthocyanidins augment IFN-γ-induced immune function via up-regulation of CD11a expression in human T lymphocytes. Journal of nutrition and metabolism, 7, 35.


  3. McAnulty, L. S., Nieman, D. C., Dumke, C. L., Shooter, L. R., Henson, D. A., Utter, A. C., … & McAnulty, S. R. (2011). Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Applied Physiology, Nutrition, and Metabolism, 36(6), 976-984.


  4. Tuorila, H., Aalto, J. M., & Kallio, H. (2014). Blackcurrant seed oil and fish oil supplements differ in their effects on fatty acid profiles of plasma lipids, and concentrations of serum total and lipoprotein lipids, plasma glucose and insulin. Journal of nutritional science, 3, e21.


  5. Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., & Osada, T. (2006). Supplemental blackcurrant anthocyanins enhance memory and decrease inflammation in rats with hippocampus lesions. Journal of agricultural and food chemistry, 54(6), 2327-2332.

Määttä-Riihinen, K. R., Kamal-Eldin, A., & Törrönen, A. R. (2004). Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). Journal of agricultural and food chemistry, 52(20), 6178-6187.

Jang, Y. P., Kim, S. R., Choi, Y. H., Kim, J. H., Cho, E. K., & Lee, S. J. (2010). Anthocyanins extracted from black soybean seed coats prevent autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-κB. PLoS One, 5(10), e14352.

Ogawa, K., Kuse, Y., Tsuruma, K., Kobayashi, S., Shimazawa, M., & Hara, H. (2013). Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. BMC complementary and alternative medicine, 13(1), 1-11.

Bowtell, J. L., Aboo-Bakkar, Z., Conway, M. E., Adlam, A. R., & Fulford, J. (2017). Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition, and Metabolism, 42(7), 773-779.

Vendrame, S., Daugherty, A., Kristo, A. S., Riso, P., Klimis-Zacas, D., & Karakurt, A. (2015). Wild blueberry (Vaccinium angustifolium) consumption improves inflammatory status in the obese Zucker rat model of the metabolic syndrome. The Journal of Nutritional Biochemistry, 26(12), 1514-1520.

Kelley, D. S., Adkins, Y., Laugero, K. D., & Woodhouse, L. R. (2020). Cherries decrease oxidative stress and inflammation in healthy adults. The Journal of Nutrition, 150(4), 788-795.

Garrido, M., Paredes, S. D., Cubero, J., Lozano, M., Toribio-Delgado, A. F., Muñoz, J. L., … & Rodríguez, A. B. (2012). Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. Journal of Gerontology: Biological Sciences, 67(7), 760-768.

Howatson, G., McHugh, M. P., Hill, J. A., Brouner, J., Jewell, A. P., van Someren, K. A., … & Shave, R. E. (2011). Influence of tart cherry juice on indices of recovery following marathon running. Scandinavian Journal of Medicine & Science in Sports, 21(6), 788-796.

Levers, K., Dalton, R., Galvan, E., Goodenough, C., O’Connor, A., Simbo, S., … & Mertens-Talcott, S. U. (2016). Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. Journal of the International Society of Sports Nutrition, 13(1), 22.

Seybold, J., Kucukgoncu, S., Zhang, X., Kavalier, A., & Grossberg, G. T. (2019). Randomized, single-blind, placebo-controlled pilot study of a probiotic in Alzheimer’s disease. Journal of Alzheimer’s Disease, 68(1), 211-217.

Yang, B., Kallio, H., & Landberg, R. (2019). Effects of sea buckthorn (Hippophaë rhamnoides L.) on cardiovascular health: A systematic review of randomized controlled trials. Nutrients, 11(9), 2127.

Yang, B., Kallio, H., & Linderborg, K. M. (2019). Bioactive compounds in sea buckthorn (Hippophaë rhamnoides L.) berries and leaves, and their health benefits. Molecular Nutrition & Food Research, 63(7), e1801047.

Schagen, S. K., Zampeli, V. A., Makrantonaki, E., & Zouboulis, C. C. (2017). Discovering the link between nutrition and skin aging. Dermato-endocrinology, 9(1), e1281069.

Yu, Z., Zhang, X., Wang, X., Chen, W., & Jin, J. (2017). Sea buckthorn (Hippophae rhamnoides L.) berry oil extracts protect against chronic alcohol-induced liver damage by modulating oxidative stress. Journal of Agricultural and Food Chemistry, 65(22), 4470-4478.

Li, J., Li, J., Wang, Y., Li, Y., Yang, F., Li, X., … & Li, P. (2017). Sea buckthorn (Hippophae rhamnoides L.) oil protects against chronic stress-induced inhibitory function of natural killer cells in rats. International Journal of Molecular Sciences, 18(4), 744.

Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449-7454.

Wallace, T. C., Giusti, M. M., & Rodriguez-Mateos, A. (2015). Assessment of anthocyanins in human tissues. Journal of Agricultural and Food Chemistry, 63(6), 2087-2096.

Rojo, L. E., Ribnicky, D., Logendra, S., Poulev, A., Rojas-Silva, P., Kuhn, P., … & Raskin, I. (2012). In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chemistry, 131(2), 387-396.

Devore, E. E., Kang, J. H., Breteler, M. M., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135-143.

Wang, S. Y., & Jiao, H. (2000). Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry, 48(11), 5677-5684.

Vuorelaa, S., Kremerb, C., & Kivijärvi, P. (2016). Lingonberry flavonoids: isolation, structures, and antioxidant activities. Journal of Agricultural and Food Chemistry, 64(24), 5041-5048.

Ahola, T. M., Manninen, A. M., & Roivainen, P. (2017). Lingonberry consumption is associated with an increase in bacterial richness and diversity in the gut microbiota of Finnish women. PloS One, 12(9), e0184602.

Skarpanska-Stejnborn, A., Pilaczynska-Szczesniak, L., Basta, P., Deskur-Smielecka, E., Horoszkiewicz-Hassan, M., & The effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women. Redox Report, 14(6), 275-285.

Lee, L. W., & Wang, M. Y. (2018). Lingonberry polyphenols protect human retinal pigment epithelial cells against oxidative stress-induced apoptosis. Journal of Agricultural and Food Chemistry, 66(45), 11971-11979.

Torronen, R., Kolehmainen, M., Sarkkinen, E., Mykkanen, H., & Niskanen, L. (2012). Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. American Journal of Clinical Nutrition, 96(3), 527-533.

  • Liu Q, et al. Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol. 2011;91(3): 601-609. doi: 10.1007/s00253-011-3403-x
  •  
  • Benetton ML, et al. In vitro effects of artemisinin and Artemisia annua extracts on Toxoplasma gondii. Parasitol Int. 2011;60(2): 181-184. doi: 10.1016/j.parint.2011.01.007
  •  
  • Debnath A, et al. Activity of disulfiram and its metabolites against Trypanosoma cruzi and Leishmania infantum. Antimicrob Agents Chemother. 2012;56(1): 533-542. doi: 10.1128/AAC.05244-11
  •  
  • Weerakoon KGAD, et al. In vitro antileishmanial activity of Artemisia annua, Artemisia absinthium, and their combination with amphotericin B. Phytomedicine. 2018;39: 111-117. doi: 10.1016/j.phymed.2017.11.010
  •  
  • Jahani S, et al. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of Artemisia absinthium extract and artemisinin derivatives in vitro and in vivo. Biomed Pharmacother. 2019;118: 109282. doi: 10.1016/j.biopha.2019.109282
  1. Karakuş S, et al. Antiparasitic activity of Tanacetum vulgare (Tansy) against Giardia lamblia. Parasitol Res. 2010;107(6): 1373-1377. doi: 10.1007/s00436-010-2019-2

Al-Megrin WA. In vitro antiprotozoal activity of Tanacetum vulgare against Giardia lamblia trophozoites. Saudi J Biol Sci. 2020;27(1): 159-163. doi: 10.1016/j.sjbs.2019.09.015

Kılıç O, et al. The antimicrobial and antiviral activity of essential oil and aqueous, methanol, ethanol, and ethyl acetate extracts of Tanacetum vulgare. J Med Food. 2019;22(11): 1163-1168. doi: 10.1089/jmf.2018.4373

Özek G, et al. In vitro antimicrobial activity of Tanacetum vulgare against clinical isolates of methicillin-resistant Staphylococcus aureus. J Med Microbiol. 2017;66(6): 828-834. doi: 10.1099/jmm.0.000504

Srivastava JK, et al. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep. 2010;3(6): 895-901. doi: 10.3892/mmr.2010.377

 

Boukhatem MN, et al. Antimicrobial activity of chamomile (Matricaria chamomilla L.) essential oil against Klebsiella pneumoniae. Genet Mol Res. 2013;12(4): 5317-5327. doi: 10.4238/2013.November.11.6

 

Amiri M, et al. Antiparasitic activity of chamomile (Matricaria chamomilla L.) against Giardia lamblia in vitro. Rev Inst Med Trop Sao Paulo. 2016;58: 50. doi: 10.1590/S1678-9946201658050

 

McKay DL, et al. Chamomile (Matricaria chamomilla L.): An overview. Phytother Res. 2006;20(7): 519-530. doi: 10.1002/ptr.1900

Vetvicka, V. et al., 2019. “β-glucan: supplement or drug? From laboratory to clinical trials.” Molecules, 24(7), p.1251.

 

Ref: Youn, M.J. et al., 2008. “Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells.” World Journal of Gastroenterology, 14(36), pp. 5524-5531.

 

Shikov, A.N. et al., 2014. “Chemical and pharmacological studies of Chaga.” Phytotherapy Research, 28(10), pp. 1565-1574.

 

Mishra, S.K. et al., 2012. “Antioxidant and immunomodulatory activity of exo-and endopolysaccharide fraction from submerged mycelia culture of Inonotus obliquus.” Journal of Ayurveda and Integrative Medicine, 3(4), pp. 193-199.

Talbott, S. & Talbott, J., 2012. “Effect of Shiitake (Lentinus edodes) extract on human immune function: a randomized, double-blind, placebo-controlled study.” Journal of the American College of Nutrition, 31(4), pp. 175-183.

 

Zhu, Q. et al., 2015. “The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part II.” Journal of Functional Foods, 17, pp. 761-772.

 

Lee, J.S. et al., 2014. “Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells.” International Immunopharmacology, 18(4), pp. 487-494.

 

Barros, L. et al., 2008. “Antioxidant activity and phenolic contents of Portuguese wild mushrooms.” Journal of Food Composition and Analysis, 21(6), pp. 439-445.